The phenolic O and $H(1)$ atoms lie close to the phenyl plane $[0.003$ (2) and $0.002(27) \AA$], with the imino N atom at a distance of -0.151 (2) \AA from the plane. The molecule as a whole is non-planar, the dihedral angle between the two rings is $82 \cdot 5$ (3) \AA.

Torsion angles defining the relationship of the ethylideneamino group to the two rings are in Table 2. The imino N atom is cis to the thiophene S atom; the methyl $\mathrm{C}(6)$ atom is trans to the S atom and cis to the phenyl ring about the $\mathrm{C}=\mathrm{N}$ bond.

The crystal structure is stabilized by an intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ interaction with $\mathrm{O} \cdots \mathrm{N}=$ $2.835(3), \mathrm{H} \cdots \mathrm{N}=2.08$ (3) \AA and an $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ angle of $160(3)^{\circ}$ with N at $\frac{1}{2}-x,-y, z$. There is also an intramolecular interaction of the same type with geometry (in order given above) of $2.866(3)$, $2 \cdot 53$ (3) \AA, and $108(3)^{\circ}$.

This work was supported by the Polish Academy of Sciences (Project CPBP 01.12).

References

Glowiak, T., Rucińska, A., Sobczak, J. M. \& Ziólkowsii, J. J. (1987). 1lth Summer School on Coordination Chemistry, Karpacz, Poland, Proceedings, p. 40.
Harsbarger, W. R. \& Bauer, S. H. (1970). Acta Cryst. B26, 1010-1020.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Moustakali-Mavridis, I., Hadjoudis, E. \& Mavridis, A. (1978). Acta Cryst. B34, 3709-3715.

Moustakali-Mavridis, I., Hadjoudis, E. \& Mavridis, A. (1980). Acta Cryst. B36, 1126-1130.

Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Federal Republic of Germany.
Sobczak, J. M., GŁowiak, T. \& Ziólkowski, J. J. (1990). Trans. Met. Chem. In the press.
Sundaralingam, M. J. \& Jensen, L. H. (1965). Acta Cryst. 18, 1053-1058.
Syntex (1976). XTL/XTLE Structure Determination System. Syntex Analytical Instruments, Cupertino, California, USA.

Structures of 5-Dimethylamino-1-[N-(2,6-dimethylphenyl)benzimidoyl]tetrazole, $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{6}$, and 7,9-Dimethyl-5-dimethylamino-2-phenyl-3H-1,3,4-benzotriazepine, $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{4}$

By Peter F. Lindley
Department of Crystallography, Birkbeck College, Malet St, London WC1E 7HX, England
and Gerhard V. Boyd and George A. Nicolaou
Department of Chemistry, King's College, Strand, London WC2R 2LS, England

(Received 1 November 1989; accepted 11 December 1989)

Abstract

IVa), $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{6}, M_{r}=320 \cdot 40$, monoclinic, $P 2_{1} / c, a=9.785$ (1),$\quad b=7.701$ (1),$c=23.847$ (3) \AA, $\beta=100 \cdot 31(1)^{\circ}, \quad V=1768 \cdot 0$ (4) $\AA^{3}, \quad Z=4, \quad D_{x}=$ $1.203 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Cu} K \alpha)=1.54178 \AA, \quad \mu=$ $6.14 \mathrm{~cm}^{-1}, F(000)=680, T=291 \mathrm{~K}$, final $R=0.060$ for 3091 independent reflections. The geometry of the five-membered ring resembles that of other tetrazoles. Thus the ring is planar and the N2-N3 linkage, $1-278$ (4) \AA, is predominantly double bond in character. (VIIb), $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{4}, M_{r}=292 \cdot 38$, monoclinic, $\quad P 2_{1} / c, \quad a=11.592$ (1),$\quad b=14.781$ (2),$\quad c=$ 9.497 (1) $\AA, \beta=98 \cdot 32$ (1) ${ }^{\circ}, V=1610 \cdot 1$ (3) $\AA^{3}, Z=4$, $D_{x}=1.206 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})=1.54178 \AA, \quad \mu=$ $5.88 \mathrm{~cm}^{-1}, F(000)=624, T=291 \mathrm{~K}$, final $R=0.056$ for 2703 significant independent reflections. The seven-membered ring is severely puckered and the endocyclic bond lengths indicate double bonds

between $\mathrm{N} 1-\mathrm{C} 2, \quad 1.274$ (3) \AA, \quad and $\mathrm{N} 4-\mathrm{C} 5$, 1.286 (2) \AA. In the crystal the H atom at N3 is hydrogen bonded to N 1 in a symmetry-related molecule; the $\mathrm{N} \cdots \mathrm{N}$ separation is 3.096 (3) \AA.

Introduction. We recently reported general syntheses of 1- and 2-benzimidoyltetrazoles and the conversion of some of these compounds into novel $3 H-1,3,4$ benzotriazepines (Boyd, Cobb, Lindley, Mitchell \& Nicolaou, 1987). Here we describe the X-ray structures of a tetrazole and a benzotriazepine.

Treatment of a mixture of N-benzoyl-2,6-dimethylaniline and dimethylcyanamide with phosphorus oxychloride, followed by perchloric acid, gave the salt (Ia) (Boyd, Khurshid, Nicolaou \& Smith, 1988), which afforded the azido perchlorate (II a) with sodium azide. The action of sodium

Table 1. Crystal and refinement data for (IVa) and (VII b)

	(IVa)	(VII b)
Crystal shape and size (mm)	Tabular on [001]	Prismatic
	$0.5 \times 0.5 \times 0.25$	$0.5 \times 0.5 \times 1.0$
Reflections used for cell-parameter refinement: number and θ range (${ }^{\circ}$)	21	20
	$25 \cdot 2 \leq \theta \leq 29.8$	$25 \cdot 1 \leq \theta \leq 29.7$
Data-collection method	$\omega / 2 \theta$	$\omega / 2 \theta$
2θ range (${ }^{\circ}$)	$1<2 \theta<140$	$\mathrm{i}<2 \theta<140$
Scan parameters: method, number of steps, step size (${ }^{\circ}$)	Stationary background $(70+0.142 \tan \theta)$	Moving window 120 (90)
	$0 \cdot 01$	0.01
Range of h	$0 \rightarrow 11$	$-13 \rightarrow 13$
k	$-8 \rightarrow 5$	$-18 \rightarrow 0$
l	$-28 \rightarrow 28$	$-7 \rightarrow 10$
Standard reflections: number, measuring frequency (reflections), maximum variation (\%), overall radiation decay	4	4
	50	50
	9.6	$2 \cdot 1$
	Insignificant	Insignificant
Transmission-factor range	1.00-1.07	1.00-1.21
Number of reflections measured	4604	6089
Number of unique reflections	3091	2912
$R_{\text {int }}$	0.019	0.009
Number of reflections used in refinement	3091	2703
Omission criteria		$F<S \sigma(F)$
Number of parameters refined	298	200
Final R value	0.060	0.056
$w=1 /\left[\sigma^{2}(F)+A F^{2}\right] ; A$	0.000296	0.000385
Isotropic extinction parameter, X	$0.24(1) \times 10^{-5}$	0.33 (2) $\times 10^{-5}$
Final $w R$	0.090	0.072
Final largest shift/e.s.d.	0.91	0.48
Max. and min. heights in final	$0.31,-0.27$	0.26, -0.22

hydroxide on the azido salt gave the tetrazole (IVa) by spontaneous 1,5 -dipolar cyclization of the azide (III a). Treatment of the tetrazole with perchloric acid regenerated the azido perchlorate (II a). Since the compound (IV a) represents the first authentic 1imidoyltetrazole, its X-ray structure was determined.

The 1-benzimidoyltetrazole (IVb) was similarly prepared, starting with N-benzoyl-2,4-dimethylaniline. The 2 -benzimidoyl isomer ($(\mathrm{V} b)$ was obtained by the reaction of 5 -dimethylaminotetrazole with N-(2,4-dimethylphenyl)benzimidoyl chloride in pyri-
dine. Both tetrazoles lost nitrogen on heating to give the benzotriazepine (VIIb), whose X-ray structure was determined. This is the first fully unsaturated member of this class without a substituent on nitrogen (Richter \& Morgenstern, 1984). We propose that the 1-benzimidoyl isomer (IVb) rearranges by a symmetry-allowed [1,5] shift of the benzimidoyl group to the 2 -substituted tetrazole ($\mathrm{V} b$) and that the latter decomposes to the nitrile imine (VIb) (Huisgen, Sauer \& Seidel, 1960), which forms the product by an antarafacial 1,7-dipolar cyclization, followed by a $[1,5]-H$ shift.

A number of analogous reactions were carried out; these are summarized in the reaction schemes above.

Experimental. Preparative and analytical details for the title compounds and the other relevant compounds involved in the reaction scheme are described in a supplementary publication.* X-ray intensity data for (IV a) and (VIIb) were collected on a Hilger and Watts Y290 four-circle diffractometer with Ni-

[^0]filtered $\mathrm{Cu} K \alpha$ radiation; the principal data collection and refinement parameters are listed in Table 1. In the case of (IVa), data were collected using the moving-window technique (Tickle, 1975); each scan consisted of some 120 steps of which 90 were taken to represent the peak and the remainder background. For (VIIb) stationary background counts were taken at both sides of each scan for one-tenth of the total scan time and the scan width was expanded in an integral number of steps to allow for dispersion. For both compounds intensity data were corrected for Lorentz and polarization effects and absorption corrections were made using the empirical method of North, Phillips \& Mathews (1968).

The structures were solved using the direct methods program MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980) and refinement on F 's was carried out with the full-matrix program SHELX76 (Sheldrick, 1976). Initially all non-H atoms were treated isotropically and most H atoms then located as diffuse electron maxima, typically $0.3-0.6 \mathrm{e} \AA^{-3}$, from difference Fourier syntheses. In subsequent refinement the H atoms were placed in idealized positions assuming $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ bond distances of 1.09 and $1.00 \AA$ respectively, and held constant; the non-H atoms were permitted to refine anisotropically. The quantity minimized was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ and refinement was terminated when the parameter shifts were less than their corresponding standard deviations. In the case of both structures inspection of the low angle, high intensity reflections revealed systematic discrepancies between $\left|F_{o}\right|$ and $\left|F_{c}\right|$ and in the final cycles an empirical isotropic extinction parameter, X, was included using the expression: $F_{c}{ }^{\prime}$ $=F_{c}\left[1-\left(X F_{c}^{2} / \sin \theta\right)\right]$. Atomic scattering factors were taken from Cromer \& Mann (1968). Moleculargeometry calculations were performed using ‘in-house’ programs (Lindley, 1985).

Discussion. Refined atomic coordinates and equivalent isotropic thermal parameters for (IVa) and (VII b) are given in Table 2,* bond lengths and angles are listed in Table 3. The atomic numbering schemes adopted are implicit in the compound names and indicated in the reaction schemes. Figs. $1(a)$ and $1(b)$ are stereo drawings of the molecules of (IVa) and (VIIb).

In (IVa) the tetrazole moiety is planar with the largest deviation out of the plane defined by atoms $\mathrm{N} 1-\mathrm{C} 5$ inclusive, being -0.009 (3) \AA for N 2 . The N2-N3 interaction, 1-278 (4) \AA has clear doublebond character, but the remaining endocyclic bond lengths suggest substantial electron delocalization over N1, N4 and C5. N51 may be involved to some

[^1]Table 2. Fractional coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic thermal parameters $\left(\times 10^{3}\right)$ for ($\mathrm{IV} a$) and (VIIb)

	x	y	z	$U_{\text {eq }}{ }^{*}$
(IVa)				
N1	6706 (2)	- 593 (2)	807 (1)	39 (1)
N2	6515 (2)	- 2052 (2)	470 (1)	48 (1)
N3	6517 (2)	- 1544 (2)	-40 (1)	51 (1)
N4	6666 (2)	207 (2)	-71 (1)	50 (1)
C5	6777 (2)	787 (2)	460 (1)	42 (1)
Cl 1	7084 (2)	-868 (2)	1417 (1)	41 (1)
N12	8171 (2)	-270 (2)	1724 (1)	47 (1)
C111	6094 (2)	- 1966 (2)	1656 (1)	43 (1)
C112	4691 (2)	- 2068 (3)	1401 (1)	53 (1)
C113	3801 (2)	- 3062 (3)	1654 (1)	70 (1)
C114	4260 (3)	- 3980 (4)	2142 (1)	76 (1)
C115	5643 (3)	- 3902 (3)	2392 (1)	72 (1)
C116	6562 (2)	- 2898 (3)	2154 (1)	55 (1)
C121	9233 (2)	682 (3)	1529 (1)	50 (1)
Cl22	9591 (2)	2288 (3)	1788 (1)	59 (1)
Cl 23	10640 (3)	3249 (4)	1615 (1)	86 (1)
C124	11360 (3)	2593 (6)	1213 (2)	106 (2)
C125	11061 (3)	963 (6)	989 (1)	94 (1)
C126	9999 (2)	-43 (4)	1143 (1)	65 (1)
C127	8895 (3)	2945 (4)	2261 (1)	73 (1)
C128	9781 (3)	-1856 (4)	910 (1)	88 (1)
N51	6924 (2)	2465 (2)	620 (1)	57 (1)
C52	7143 (4)	3697 (4)	177 (1)	90 (1)
C 53	6163 (3)	3137 (3)	1043 (1)	72 (1)
(VII b)				
N1	5351 (1)	1622 (1)	3566 (2)	43 (1)
C2	5727 (1)	2129 (1)	4617 (2)	42 (1)
N3	5055 (1)	2386 (1)	5665 (2)	48 (1)
N4	4096 (1)	2968 (1)	5136 (2)	45 (1)
C5	3275 (1)	2587 (1)	4284 (2)	41 (1)
C5a	3246 (1)	1629 (1)	3825 (2)	42 (1)
C6	2197 (2)	1157 (1)	3702 (2)	50 (1)
C7	2116 (2)	256 (1)	3278 (2)	53 (1)
C8	3120 (2)	- 162 (1)	2956 (2)	54 (1)
C9	4179 (2)	292 (1)	3036 (2)	49 (1)
C9a	4245 (2)	1194 (1)	3504 (2)	42 (1)
C21	6956 (2)	2448 (1)	4772 (2)	49 (1)
C22	7773 (2)	1926 (2)	4207 (3)	76 (1)
C23	8915 (2)	2212 (3)	4311 (4)	100 (1)
C24	9262 (2)	3004 (2)	4987 (4)	86 (1)
C25	8462 (2)	3519 (2)	5537 (4)	93 (1)
C26	7302 (2)	3249 (2)	5441 (3)	72 (1)
N51	2282 (1)	3104 (1)	3844 (2)	47 (1)
C52	2258 (2)	3997 (1)	4502 (3)	57 (1)
C53	1869 (2)	3130 (2)	2314 (2)	65 (1)
C71	963 (2)	- 232 (2)	3112 (3)	78 (1)
C91	5235 (2)	-180 (2)	2625 (3)	69 (1)

extent in this electron delocalization although the geometry at N51 is not planar. N51 is displaced by -0.245 (2) \AA from the plane through C5, C52 and C53, and the dimethylamino moiety is considerably twisted with respect to the tetrazole ring owing to steric hindrance between the methyl groups at C53 and C127 [non-bonded separation 3.581 (4) \AA]. The dihedral angle between the tetrazole ring and the plane through C5, C52 and C53 is $-25 \cdot 97(9)^{\circ}$. The geometry in the benzimidoyl moiety is also nearly planar at C11 as would be expected with the presence of the double bond at C11-N12, 1-265 (3) \AA, with C11 lying -0.011 (2) \AA out of the least-squares plane defined by N1, C11, N12 and C111; however, the dihedral angle between this plane and that of the tetrazole ring is $52.25(9)^{\circ}$. The phenyl ring of the benzimidoyl group is planar within experimental error and is twisted by $26.41(7)^{\circ}$ about the

Table 3. Bond distances (\AA) and bond angles $\left({ }^{\circ}\right)$ for the non-H atoms in (IVa) and (VIIb); e.s.d.'s include cell parameter e.s.d.'s

(IVa)			
$\mathrm{N} 1-\mathrm{N} 2$	1.375 (3)	C113-C114	1.367 (4)
N - C 5	1.356 (3)	C114-C115	$1 \cdot 380$ (4)
$\mathrm{N} 1-\mathrm{Cll}$	1.451 (4)	C115-C116	1.384 (4)
N2-N3	1.278 (4)	C121-C122	1.399 (3)
N3-N4	$1 \cdot 360$ (2)	C121-C126	1.403 (4)
N4-C5	1.329 (4)	C122-C123	1.387 (4)
C5-N51	1.348 (2)	C122-C127	1.506 (4)
C11-N12	1.265 (3)	$\mathrm{Cl23-Cl24}$	1.383 (5)
$\mathrm{Cl1}-\mathrm{Cll1}$	1.475 (3)	C124-C125	1.375 (6)
N12-C121	1.417 (3)	C125-C126	$1 \cdot 397$ (4)
C111-C112	1.401 (3)	C126-C128	1.504 (4)
C111-C116	1.393 (3)	N51-C52	1.464 (4)
C112-C113	1.377 (3)	N51-C53	1.452 (4)
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{CS}$	107.5 (2)	C113-C114-C115	119.6 (3)
N2-N1-Cl1	$116 \cdot 8$ (2)	C114-C115-C116	120.3 (2)
$\mathrm{C5}-\mathrm{Nl}-\mathrm{Cll}$	134.0 (2)	C111-C116-C115	120.0 (2)
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{N} 3$	$106 \cdot 4$ (2)	N12-C121-C122	116.9 (2)
N2-N3-N4	111.9 (2)	N12-Cl21-C126	121.3 (2)
N3-N4-C5	105-8 (2)	C122-C121-C126	121.4 (2)
$\mathrm{N}-\mathrm{C} 5-\mathrm{N} 4$	108.3 (2)	C121-C122-C123	118.7 (2)
N1-C5-N51	126.4 (2)	C121-C122-C127	121.1 (2)
N4-C5-N51	$125 \cdot 3$ (2)	C123-C122-C127	$120 \cdot 1$ (2)
$\mathrm{N} 1-\mathrm{Cl1-Cl2}$	$124 \cdot 3$ (2)	C122-C123-C124	120.5 (3)
$\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 111$	113.8 (2)	C123-C124-C125	$120 \cdot 2$ (4)
N12-Cl1-Cll1	121.8 (2)	C124-C125-C126	121.4 (3)
$\mathrm{Cl1}-\mathrm{N} 12-\mathrm{Cl21}$	$126 \cdot 1$ (2)	C121-C126-C125	117.5 (3)
$\mathrm{Cl1-C111-C112}$	121.7 (2)	C121-C126-C128	123.7 (2)
C11-C111-C116	119.1 (2)	C125-C126-C128	118.7 (3)
C112-C111-C116	119.2 (2)	C5-N51-C52	116.0 (2)
C111-Cl12-C113	119.2 (2)	C5-N51-C53	119.8 (2)
$\mathrm{Cl12-Cl13-Cl14}$	121.6 (2)	C52-N51-C53	$115 \cdot 5$ (2)
(IVb)			
$\mathrm{N} 1-\mathrm{C} 2$	1.274 (3)	C7-C71	1.507 (3)
$\mathrm{Nl}-\mathrm{C9}$	1.423 (3)	C8-C9	1.391 (3)
$\mathrm{C} 2-\mathrm{N} 3$	1.402 (3)	C9-C9a	1.404 (2)
C2-C21	1.488 (3)	C9-C91	1.509 (3)
N3-N4	1.438 (2)	C21-C22	1.388 (3)
N4-C5	1.286 (2)	C21-C26	1.376 (3)
C5-C5a	1.481 (2)	C22-C23	1.380 (4)
C5-N51	1.394 (2)	C23-C24	1.367 (5)
C5a-C6	1.392 (2)	C24-C25	1.361 (4)
C5a-C9a	1.396 (3)	C25-C26	1.393 (4)
C6-C7	1.391 (2)	N51-C52	1.462 (3)
C7-C8	1.390 (3)	N51-C53	1.463 (3)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C9}$	119.9 (2)	C8-C9-C9a	118.9 (2)
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 3$	$123 \cdot 6$ (1)	C8-C9-C91	$120 \cdot 4$ (2)
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 21$	118.6 (2)	C9a-C9-C91	$120 \cdot 8$ (2)
N3-C2-C21	117.8 (2)	$\mathrm{Nl}-\mathrm{C9}-\mathrm{C5}$	$123 \cdot 8$ (1)
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{N} 4$	$113 \cdot 3$ (2)	$\mathrm{N} 1-\mathrm{C9}-\mathrm{C} 9$	116.3 (2)
N3-N4-C5	115.0 (1)	C5a-C9a-C9	119.8 (2)
N4-C5-C5a	$126 \cdot 0$ (1)	C2-C21-C22	118.9 (2)
N4-C5-N51	116.9 (2)	C2-C21-C26	122.0 (2)
$\mathrm{C5a}-\mathrm{C} 5-\mathrm{N} 51$	117.0 (1)	C22-C21-C26	$119 \cdot 2$ (2)
C5-C5a-C6	119.1 (1)	C21-C22-C23	$120 \cdot 2$ (3)
C5-C5a-C9a	121.4 (1)	C22-C23-C24	120.7 (3)
C6-C5a-C9a	119.5 (2)	C23-C24--C25	119.2 (2)
C5a-C6-C7	121.7 (2)	C24-C25-C26	121.3 (3)
C6-C7-C8	117.8 (2)	C21-C26-C25	119.4 (3)
C6-C7-C71	120.7 (2)	$\mathrm{C} 5-\mathrm{N} 51-\mathrm{C} 52$	$115 \cdot 6$ (1)
C8-C7-C71	121.5 (2)	C5-N51-C53	116.7 (2)
C7-C8-C9	122.3 (1)	C52-N51-C53	112.1 (2)

C11-C111 bond to minimize non-bonded contacts between the ortho- H atom and the tetrazole ring [closest approach, N1 to H112, $2 \cdot 549$ (2) \AA]. The second phenyl ring, C121-C126 inclusive, is not strictly planar with maximum displacements of -0.030 (3) and 0.025 (3) \AA for C 121 and C122 respectively. The methyl substituents at the 2 and 6 positions are displaced by $0 \cdot 166(5)$ and $0 \cdot 142(5) \AA$ from the ring plane and the geometrical distortions in this region of the molecule are presumably due to
steric hindrance; C 127 is close to C53, vide ultra, whereas C128 lies above the plane of the tetrazole ring with a closest non-bonded $\mathrm{N} 2 \cdots \mathrm{C} 128$ separation of $3 \cdot 184$ (4) \AA. In the crystal structure, Fig. 2(a), the molecules are arranged in layers running approximately parallel to a* and there are no non-bonded contacts significantly closer than the sum of the respective van der Waals radii.

For compound (VIIb) a planar seven-membered triazepine ring would imply anti-aromaticity, since the ring atoms possess eight π electrons; in the crystal structure this ring is highly puckered with hinges at $\mathrm{N} 1-\mathrm{C} 5$ and $\mathrm{C} 2-\mathrm{N} 4$. Thus, the displacements of C 2 and N 4 out of the least-squares plane defined by $\mathrm{N} 1, \mathrm{C} 5, \mathrm{C} 5 \mathrm{a}$ and C 9 a are

(a)

(b)

Fig. 1. Stereo drawings of the molecules of (a) (IVa) viewed along the a axis and (b) (VII b) viewed along the c axis.

(b)

Fig. 2. Stereo drawings of the molecular packings of (a) (IVa) viewed along the \mathbf{b} axis, showing layers of molecules parallel to \mathbf{a}^{*}, and (b) (VII b) viewed along the \mathbf{a}^{*} axis. Molecules related by the c glide plane form intermolecular hydrogen bonds, 3.096 (3) \AA, between pairs of N 1 and N 3 atoms as follows: $\mathrm{N} 1 \cdots \mathrm{~N} 3\left(x, \frac{1}{2}-y,-\frac{1}{2}+z\right)$ and $\mathrm{N} 3 \cdots \mathrm{Nl}\left(x, \frac{1}{2}-y, \frac{1}{2}+z\right)$.
-0.754 (4) and -0.683 (4) \AA respectively whereas N 3 is displaced by -1.499 (3) \AA out of this plane. The endocyclic bond lengths clearly indicate double bonds at N1-C2, 1-274(3), and N4-C5, $1 \cdot 286$ (2) \AA. In the dimethylamino moiety the N51 atom has essentially $s p^{3}$-hybridized character [N51 lies some -0.332 (2) \AA out of the plane through C5, C 52 and C53], and the C5-N51 bond length, $1-394$ (2) \AA, is appreciably longer than the corresponding distance in (IV a). Steric hindrance is minimized by the dimethylamino moiety twisting away from the main plane through the molecule; the dihedral angle between the planes through C5, C5a, C9a and N1, and C5, C52 and C53 is $65 \cdot 44$ (1) ${ }^{\circ}$. The phenyl ring at $\mathbf{C} 2$ is planar within experimental error and makes a dihedral angle of $28.2(1)^{\circ}$ with the plane defined by $\mathrm{N} 1, \mathrm{C} 2$ and N 3 in order to minimize the non-bonded contact between the H atom bonded to N 3 and the ortho- H atom on the phenyl ring. The remaining aromatic ring, atoms C5a, C6, C7, C8, C9 and C9a, is not strictly planar, the largest deviation being 0.014 (2) \AA for C9; the displacements of the 7 - and 9 -methyl substituents are 0.046 (4) and 0.062 (4) \AA respectively. In the crystal structure, Fig. $2(b)$, the molecules pack so that a network of intermolecular hydrogen bonds is formed between pairs of N 1 and N 3 atoms, viz. $\mathrm{N} 1 \cdots \mathrm{~N} 3\left(x, \frac{1}{2}-y,-\frac{1}{2}+z\right)$ and $\mathrm{N} 3 \cdots \mathrm{~N} 1\left(x, \frac{1}{2}-y, \frac{1}{2}+z\right), 3 \cdot 096$ (3) \AA.

All the figures were drawn using PLUTO78 (Motherwell \& Clegg, 1978), as modified by Dr A. Quick to run on the Amdahl computer at the University of London Computer Centre.

References

Boyd, G. V., Cobb, J., Lindley, P. F., Mitchell, J. C. \& Nicolaou, G. A. (1987). J. Chem. Soc. Chem. Commun. pp. 99-101.
Boyd, G. V., Khurshid, M. M. P., Nicolaou, G. A. \& Smith, J. A. S. (1988). J. Chem. Soc. Perkin Trans. 2, pp. 933-937.

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Hulgen, R., Sauer, J. \& Sedel, M. (1960). Chem. Ber. 93, 2885-2891.
LindLey, P. F. (1985). System of molecular geometry and graphics programs written for an Acorn BBC microcomputer (unpublished). Birkbeck College, London, England.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). Multan80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Richter, P. \& Morgenstern, O. (1984). Pharmazie, 39, 301-314.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Tickle, I. J. (1975). Acta Cryst. B31, 329-331.

Structure of Ethyl 5-Ethoxy-3-phenyl-2-indolecarboxylate

By T. N. Chandrakantha and Puttaraja
Department of Physics, Jnana Bharathi Campus, Bangalore University, Bangalore-560 056, India
and Vasantha Pattabht
Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Madras-600 025, India

(Received 17 August 1989; accepted 27 October 1989)

Abstract. $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3}, \quad M_{r}=309 \cdot 37$, monoclinic,
$P 2_{1} c, \quad a=10 \cdot 322(3), \quad b=21.063(5), \quad c=$
$15 \cdot 006(5) \AA, \beta=92 \cdot 93(3)^{\circ}, V=3258 \cdot 22(1) \AA^{3}, Z=$
$8, D_{m}=1 \cdot 27(5), D_{x}=1 \cdot 26 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Cu} K \alpha)=$
$1 \cdot 5418 \AA, \mu=0,61 \mathrm{~mm}^{-1}, \quad F(000)=1312, \quad T=$
300 K, final $R=0.048$ for 4361 observed reflections.
Two independent molecules per asymmetric unit.
The phenyl ring connected to the planar indole rings
is rotated out of the indole plane by $44 \cdot 7(4)^{\circ}$ in
molecule A and $47.3(5)^{\circ}$ in molecule B. The ethoxy-
carbonyl group makes an angle of 4.4 (6) ${ }^{\circ}$ with the mean plane of the indole rings in molecule A and $14.7(5)^{\circ}$ in molecule B. The molecules in the asymmetric unit are held together by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds.

Introduction. Indole derivatives are important pharmacologically, possessing anti-allergic, central nervous system depressant and muscle relaxant properties (Harris \& Uhle, 1960; Wei \& Stanley,

[^0]: * Complete preparative and analytical details for the compounds involved in the reaction schemes, together with lists of structure factors, anisotropic temperature factors and H -atom parameters, and details of molecular geometries for (IV a) and (VIIb) have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52879 (34 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * See deposition footnote.

